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The objectives of this study were to determine whether contaminant-associated immuno-
suppression occurs in prefledgling herring gulls and Caspian terns from the Great Lakes and to
evaluate immunological biomarkers for monitoring health effects in wild birds. During 1992 to
1994, immunological responses and related variables were measured in prefledgling chicks at

colonies distributed across a broad gradient of organochlorine contamination (primarily
polychlorinated biphenyls), which was measured in eggs. The phytohemagglutinin skin test was
used to assess T-lymphocyte function. In both species, there was a strong exposure-response

relationship between organochlorines and suppressed T-cell-mediated immunity. Suppression
was most severe (30-45%) in colonies in Lake Ontario (1992) and Saginaw Bay (1992-1994) for
both species and in western Lake Erie (1992) for herring gulls. Both species exhibited biologically
significant differences among sites in anti-sheep red blood cells antibody titers, but consistent
exposure-response relationships with organochlorines were not observed. In Caspian terns and,
to a lesser degree, in herring gulls, there was an exposure-response relationship between
organochlorines and reduced plasma retinol (vitamin A). In 1992, altered white blood cell numbers
were associated with elevated organochlorine concentrations in Caspian terns but not herring
gulls. The immunological and hematological biomarkers used in this study revealed contaminant-
associated health effects in wild birds. An epidemiological analysis strongly supported the
hypothesis that suppression of T-cell-mediated immunity was associated with high perinatal
exposure to persistent organochlorine contaminants. Environ Health Perspect 104(Suppl
4):829-842 (1996)

Key words: biomarkers, immunotoxicology, immunosuppression, organochlorines, PCBs,
Great Lakes, fish-eating birds, Larus argentatus, Sterna caspia

Introduction
Laboratory studies have shown that envi-
ronmental contaminants can suppress

immunological function and increase sus-

ceptibility to infectious diseases (1-5).
Often these chemicals act at low doses and
cause persistent effects, especially with peri-
natal exposure. These laboratory studies
raise concerns about potential immunotox-
ic impacts on wildlife and humans. There
have been few immunotoxicological inves-
tigations of free-living wildlife, especially
birds. We investigated associations between
contaminants and immune function in
prefledgling fish-eating birds from the
Great Lakes.

The high trophic level of fish-eating
birds exposes them to elevated concentra-

tions of contaminants that biomagnify.
Organochlorines such as polychlorinated
biphenyls (PCBs), 2,3,7,8-tetrachloro-
dibenzo-p-dioxin (TCDD), and 1,1,1-
trichloro-2,2-bis(p-chlorophenyl)ethane
(DDT) have been associated with physio-
logical (6,7), reproductive (8-13), devel-
opmental (14-17), behavioral (11,18),
and population-level (13,19) problems in
fish-eating birds of the Great Lakes during
the last 30 years. Although concentrations
of many contaminants declined drastically
during the 1970s, concentrations have
declined slowly, leveled off, or increased
more recently (20,21). Reproduction has
improved in many areas, but significant
biological impacts at highly contaminated
sites continue to be associated with
coplanar halogenated aromatic hydrocar-
bons (HAHs) such as TCDD and some

PCBs (17).
In laboratory animals, HAHs cause

immunosuppression through Ah-receptor-
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dependent mechanisms (22-28), although
Ah-receptor-independent mechanisms also
are involved (27-30). T-lymphocytes,
which mature in the thymus, regulate
immune responses and attack virus-infected
and malignant cells. In chicken embryos,
PCB #126 induces the activity of ethoxyre-
sorufin-O-deethylase (EROD) in thymic
tissue, demonstrating that the avian thymus
is a target organ for Ah-receptor-mediated
toxicity (31). In developing birds and mam-
mals, low levels ofHAHs cause thymic atro-
phy (22,26,32-35). Toxic effects occur
throughout T-lymphocyte development,
including the prothymocyte stage in bone
marrow (36), thymocyte selection in the
thymus (37-40), and the mature T-lym-
phocyte stage in the blood (41). Numerous
T-cell functions are suppressed (32,42-47).
B lymphocytes, which mature in the bursa
of Fabricius in birds and the bone marrow
or Peyer's patches in mammals, produce
antibodies that destroy invading microor-
ganisms. High doses of HAHs suppress
antibody responses (22,23,28,42,44,
45,48-50). HAHs reduce concentrations
of retinol [vitamin A] and thyroxine
(51-54), which are important for immune
function (55-57). Low concentrations of
vitamin A occur in herring gulls (Larus
argentatus) at some highly contaminated
Great Lakes colonies (6,58,59).

Immunosuppression by HAHs increases
susceptibility to infectious diseases. An
early study found increased mortality fol-
lowing challenge with duck hepatitis virus
in mallard ducklings (Anas platyrhynchos)
dosed with PCBs (60). Subsequent labora-
tory studies showed that HAHs increased
susceptibility to bacteria (42,48,61), virus-
es (26,50,62), and protozoan parasites
(26). Several investigators suggested asso-
ciations between epizootics and elevated
organochlorine exposure in beluga whales
(Delphinapterus leucas) in the St. Lawrence
Estuary (63), California sea lions
(Zalophus californianus) on San Miguel
Island (64,65), harbor seals (Phoca
vitulina) in Europe (66-68), and bot-
tlenose dolphins (Tursiops truncatus) in
the Atlantic Ocean (69). At highly conta-
minated sites in the Great Lakes, double-
crested cormorants (Phalacrocorax auritus)
had increased rates of eye infections associ-
ated with Pasteurella multocida (70).
Children exposed perinatally to PCBs and
TCDD in arctic Quebec experienced
an increased incidence of middle ear
infections (71).

For ethical and financial reasons,
manipulative field experiments often are

not possible in ecotoxicology. Pollution
patterns are determined by the locations of
pollution sources and the movement of air,
water, and sediments. In the absence of
manipulative experiments, epidemiological
criteria aid the elucidation of associations
between contaminants and biological
effects (72). For epidemiologists, establish-
ing causation does not require that a factor
be a necessary and sufficient condition to
produce an effect. Rather, causal associa-
tions imply that a factor is part of a com-
plex that increases the probability of an
effect, and that reducing the factor reduces
the probability of the effect. Epidemio-
logical criteria for assessing causal associa-
tions include time order, strength of associ-
ation, specificity, consistency upon replica-
tion, coherence, predictive performance,
and probability (72). The criteria that sup-
port an association are weighed against
those that detract from it.

The objectives of this ecoepidemiologi-
cal study were to determine whether conta-
minant-associated immunosuppression
occurs in prefledgling herring gulls and
Caspian terns (Sterna caspia) from the Great
Lakes and to evaluate immunological bio-
markers for monitoring health effects in
wild birds. We employed two in vivo tests of
immune function: the phytohemagglutinin
(PHA) skin test for T-cell-mediated immu-
nity and the sheep red blood cell (SRBC)

hemagglutination test for antibody-mediat-
ed immunity. We also measured white
blood cell (WBC) numbers, plasma retinol,
and thyroxine as general biomarkers relevant
to immune function. Prefledgling birds were
studied because the developing immune sys-
tem is particularly sensitive to contaminants.
The herring gull was chosen because it is the
most frequently used and best understood
avian bioindicator species in the Great
Lakes. The Caspian tern was chosen because
its elevated exposure and sensitivity to
organochlorines have been associated with
reproductive and population-level effects
(12,19,73,74). Contaminant-associated
immunosuppression in young Caspian
terns is a possible mechanism for these
population-level effects.

Methods
Sampling Desig

In 1992, herring gull chicks were sampled
across a gradient of organochlorine conta-
mination at four sites within the Great
Lakes and one site outside the Great Lakes
(Tables 1,2; Figure 1): a) Little Charity
Island in Saginaw Bay, Lake Huron;
b) Bird and Anchor Islands in the North
Channel, Lake Huron; c) Monroe, on the
western shore of Lake Erie; d) Hamilton
Harbor on the western shore of Lake
Ontario; and e) Pony Island in northern

Monroe

Figure 1. Sampling sites for immune function tests in herring gull and Caspian tern chicks. Bars represent total
PCB concentrations found in pooled egg homogenates from each site. Numbers above bars indicate total PCB con-
centrations. PCB concentrations for the two species are graphed on different scales.
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Table 1. Sampling design for immune function study in fish-eating birds of the Great Lakes during 1992 to 1994.

Variable
Species/colony and location Code Year PHA test SRBC test WBC counts Retinol Thyroxine

Herring gull
Pony Island, northern Lake Winnipeg Winn 1992 X X X X
Bird Island/Anchor Island, North Channel, Lake Huron NCh 1992 X X X X

1993 X X X X X
Hamilton Harbour, western Lake Ontario HamH 1992 X X X X X
Monroe, western Lake Erie WErie 1992 X X X X X
Little Charity Island, Saginaw Bay, Lake Huron SagB 1992 X X X X X

1993 X X X X X
1994 X X

Caspian tern
Elm Island, North Channel, Lake Huron NCh 1992 X X X X X

1993 X X X X X
1994 X X

Gravelly Island, Upper Green Bay, Lake Michigan UGB 1992 X X X X
High Island, northern Lake Michigan Mich 1992 X X X X X
Confined Disposal Facility, Saginaw Bay, Lake Huron SagB 1992 X X X X X

1993 X X X X X
1994 X X

Pigeon Island, eastern Lake Ontario EOnt 1992 X X X X

Abbreviations: PHA, phytohemagglutin; SRBC, sheep red blood cells; WBC, white blood cells.

Table 2. Organochlorine contaminants in pooled samples of herring gull and Caspian tern eggs from the Great Lakes and Lake Winnipeg during 1992.

Concentration (wet weight)
Species/ XPCBs C-TEQs HG-TEQs TCDD p,p'-DDE Dieldrin Mirex HCB Heptachlor epoxide
site codea (pg/g) (ng/g) (pg/g) (pg/g) (pg/g) (pg/g) (pg/g) (pg/g) (pg/g)
Herring gull
Winn 4.17 2.60 71 5.3 1.00 0.11 0.03 0.03 0.06
NCh 6.67 3.18 181 16.8 4.03 0.31 0.12 0.04 0.12
HamH 14.18 9.22 240 29.3 5.21 0.07 0.60 0.04 0.04
WErie 21.39 13.48 257 13.1 5.79 0.20 0.08 0.04 0.10
SagB 27.45 17.53 421 35.6 7.78 0.19 0.06 0.05 0.11

Caspian tern
NCh 4.31 3.29 NA 6.3 0.93 0.09 0.02 0.01 0.03
UGB 5.88 1.62 NA 0.2 2.27 0.16 0.02 0.01 0.06
Mich 6.57 4.38 NA 5.9 3.46 0.16 0.02 0.01 0.06
SagB 7.54 6.84 NA 11.9 3.12 0.02 0.03 0.01 0.02
EOnt 7.73 3.49 NA 12.4 3.78 0.004 0.60 0.01 0.02

Abbreviations: XPCBs, total PCBs; C-TEQs, TCDD toxic equivalents determined by the chicken hepatocyte bioassay; HG-TEQs, TCDD toxic equivalents calculated from herring
gull-specific induction equivalency factors; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; p,p'-DDE, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene; HCB, hexachlorobenzene; NA,
not applicable. aRefer to Table 1 for site codes.

Lake Winnipeg, Manitoba. The North
Channel and Lake Winnipeg sites were
chosen as reference colonies based on cont-
aminant concentrations previously mea-
sured in eggs. Herring gulls were resampled
at one reference site, the North Channel,
in 1993 and at one highly contaminated
site, Saginaw Bay, in 1993 and 1994. In
1992, Caspian tern chicks were sampled at
five sites within the Great Lakes (Tables 1,
2; Figure 1): a) Gravelly Island in upper
Green Bay, Lake Michigan; b) High Island
in northern Lake Michigan; c) Elm Island
in the North Channel, Lake Huron; d) the
Confined Disposal Facility in southern
Saginaw Bay, Lake Huron; and e) Pigeon
Island in eastern Lake Ontario. The North

Channel was chosen as a reference colony.
In 1993 and 1994, Caspian terns were
resampled at the reference site, the North
Channel, and at one highly contaminated
site, Saginaw Bay. Logistical difficulties
prevented some variables from being mea-
sured at some sites (Table 1).

At 8 of 10 sites, enclosures (1 x 2 cm
plastic mesh and approximately 0.8 m
high) were placed around groups of 10 to
20 herring gull nests or 30 to 40 Caspian
tern nests during midincubation. Usually
two or three enclosures were erected at
each site. Chicks were confined until fledg-
ing or until the enclosures were removed.
Chicks were banded with U.S. Fish and
Wildlife Service leg bands for individual

identification. At two sites, rocky ground
prevented the construction of enclosures,
so chicks were captured and released into
thick vegetation that provided refuge and
prevented chicks from fleeing too far from
their nests. Immune function tests were
initiated on 35 to 50 chicks at each site.
WBC numbers, retinol concentrations,
and thyroxine concentrations were assessed
for 10 to 20 chicks per site.

Immune function tests were initiated
on 3-week-old chicks. Age was deter-
mined by estimated hatch times and body
size measurements. Target body size for
herring gull chicks was a body mass of 400
to 700 g and a wing chord of 130 to 200
mm. Criteria for Caspian terns were a
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body mass of 450 to 550 g and a wing
chord of 130 to 200 mm. Body size
measurements were made on the same
chicks at the beginning and end of the
functional tests.

Functional Tests for
Immunocompetence
The PHA skin test for T-cell-mediated
immunity was conducted in 3-week-old
chicks following the procedures of
Grasman and Scanlon (75) using a 0.1-ml
dose of 1 mg/ml PHA-P (Sigma, St. Louis,
MO) in phosphate-buffered saline (PBS).
Feathers were plucked from both wing
webs. One wing web was injected with
PHA while the other received a placebo
injection of PBS alone. The thickness of
each wing web was measured to the nearest
0.05 mm immediately before and 24 ± 3
hr after the injections using a pressure-sen-
sitive caliper with a low-tension spring that
did not crush the skin (model 304-196,
Dyer Co., Lancaster, PA). A stimulation
index was calculated as the change in the
thickness of the PHA-injected wing web
minus the change in thickness of the PBS-
injected wing web.

The SRBC hemagglutination test was
initiated at the same time as the PHA skin
test. Chicks were injected via the wing
vein with 0.1 ml of a 1% SRBC suspen-
sion in sterile saline. Plasma samples were
collected from chicks 5 to 7 days after
SRBC injection because antibody titers
peak in gulls and terns at approximately 6
days post-immunization (K Grasman,
unpublished data). Total (IgM + IgG)
and 2-mercaptoethanol-resistant (IgG)
antibody activities were measured by the
microtiter method of Gross and Siegel
(76,77). Fifty microliters of normal saline
were added to each well in 96-well
microtiter plates with round-bottomed
wells. Fifty microliters of plasma were
added to the first well of each row, and
serial 2-fold dilutions were performed
across rows. Fifty microliters of a 0.25%
SRBC suspension in normal saline were
added to each well. The plates were
incubated for 3 hr at 37°C. Titers were
determined as the log2 of the reciprocal of
the highest dilution showing agglutination.
To measure IgG titers, plasma samples were
incubated for 60 min with 0.2 M 2-mer-
captoethanol before dilution. Red blood
cells from one sheep (Colorado Serum Co,
Denver, CO) were used for all injections
and assays during 1992 and 1993. In
1994, SRBCs were obtained from another
sheep of the same age and flock.

General Immunological and
Hematological Biomarkers
One day after initiating the functional tests,
a 4-ml blood sample was drawn from the
wing vein of the same chicks using a 22-
gauge needle and Vacutainer tubes contain-
ing ethylenediaminetetraacetic acid (EDTA)
(Beckton Dickinson, Rutherford, NJ). Two
blood smears were made within 5 hr after
blood collection. Blood was centrifuged at
2575xg for 5 min, and the plasma was
stored in liquid nitrogen for retinol and thy-
roxine determinations. A second 4-ml blood
sample was collected 6 days after SRBC
immunization, and the plasma was stored in
liquid nitrogen for antibody analysis.

Blood smears were fixed with methanol
and stained with Wright stain (Accustain,
Sigma, St. Louis, MO) using 100% stain
for 30 sec followed by a 1:1 dilution with
distilled water for 90 sec. Smears were rinsed
with distilled water and allowed to air dry.
Two hundred WBCs were counted and
classified using oil immersion microscopy at
100Ox magnification.

Retinol was extracted from plasma after
the addition of retinyl acetate as an internal
standard. Retinol-protein complexes were
dissociated by vigorous shaking after the
addition of acetonitrile. The retinol was
extracted with hexane, and the organic and
aqueous phases were separated by centrifu-
gation. The organic phase was dried under
nitrogen, reconstituted with methanol, and
filtered. The retinoids in the extract were
separated by reverse-phase high-perfor-
mance liquid chromatography (HPLC)
using a 15-cm long, 5 pm octadecylsilane
(ODS) analytical column and 100%
methanol as a solvent. Either fluorescence
(ex: 336 nm; em: 480 nm) or UV-visible
(326 nm) was used to detect the retinoids.
The detection limit for retinol in plasma
was 5 pg/liter. Total plasma thyroxine
was measured using a competitive bind-
ing enzyme immunoassay (veterinary
modification of the EZ Bead T4 Test,
Immunotech Corp, Boston, MA).

Organochlorine Analysis and Chick
Hepatocyte Bioassay
The 12 eggs collected from each site were
pooled for organochlorine analysis by the
analytical services laboratory at the
National Wildlife Research Centre of the
Canadian Wildlife Service following the
methods of Norstrom et al. (78). PCB
residues are reported as the sum of the fol-
lowing 42 PCB congeners: IUPAC nos.
28, 31, 42, 44, 49, 52, 60, 64, 66, 70, 74,
87, 97, 99, 101, 105, 110, 118, 128, 129,

137, 138, 141, 146, 149, 151, 153, 158,
170, 171, 172, 174, 180, 182, 183, 185,
194, 195, 200, 201, 203, and 206.

Non-ortho PCB congeners (IUPAC
nos. 37, 77, 126, and 169) and all 2,3,7,8-
substituted polychlorinated dibenzo-p-
dioxins (PCDDs) and polychlorinated
dibenzofurans (PCDFs) also were measured.
Samples of the pooled egg homogenates
were dried with anhydrous sodium sulfate
and ground into a powder. An open chro-
matographic column wet-packed with
multiple absorbents was used for the ini-
tial extraction and cleanup. After spiking
with a 13C-PCDD mixture (Cambridge
Isotope Laboratories) and a 13C-PCB 77,
126, and 169 mixture (Wellington Isotope
Laboratories), the column was eluted using
dichloromethane/hexane. A carbon column
was used for further cleanup and trace
enrichment. The concentrated eluent was
cleaned up and separated on a deactivated
Florisil column by first eluting with
dichloromethane/hexane for non-ortho
PCB analysis. The column was eluted with
dichloromethane to produce a second frac-
tion. This fraction was cleaned up on an
activated basic alumina column by eluting
with 1:50 dichloromethane:hexane to pro-
duce a fraction containing residual PCBs
and other organochlorines. The column
was eluted with dichloromethane:hexane to
produce a fraction for PCDD/PCDF
analysis. A Hewlett-Packard 5971A
GC/MSD was used to separate and quanti-
fy non-ortho PCB, PCDD, and PCDF
congeners. Detection limits were 75 pg/g
for non-ortho PCB congeners and approxi-
mately 0.3 to 2.7 pg/g for PCDD and
PCDF congeners.

Because different HAH congeners have
different toxicities, the total biological
activity of a mixture of congeners cannot
be estimated by adding the concentrations
of the individual congeners. The chicken
embryo hepatocyte bioassay was used to
measure the total TCDD-like activity in
the pooled egg homogenates (79,80).
HAHs were extracted using minor modifi-
cations of the procedures used for chemical
residue analysis (81,82). Extracts added to
chicken hepatocytes contained all PCDDs,
PCDFs, PCBs, and structurally related
nonpolar HAHs and chlorinated pesticides.
Based on the in vitro induction of EROD
in chicken hepatocytes, this bioassay com-
pared the potency of a mixture of HAHs to
that of a TCDD standard. The resulting
measure of TCDD-like toxicity was desig-
nated as C-TEQs (chicken bioassay-derived
TCDD-equivalents).
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Kennedy et al. (83) used in vitro
induction of EROD activity in primary
hepatocyte cultures from 26-day-old her-
ring gull embryos to compare the relative
toxicities of TCDD, 2,3,7,8-tetrachloro-
dibenzofuran (TCDF), and various PCBs.
Based on the EC50 for EROD induction,
different HAH congeners were compared
to TCDD, the most toxic congener. The
following herring gull-specific induction
equivalency factors (IEFs) were generated:
TCDD = 1.0; TCDF = 0.9; PCB congener
#169 = 0.07, PCB congener #126 = 0.06;
PCB congeners #77, #105, #118 = 0.
Multiplying the concentration of each con-
gener by its IEF and then summing the
products gave an estimate of the total
dioxinlike toxicity of the mixture for herring
gulls. This estimate was called HG-TEQs
(herring gull-specific TCDD-equivalents).

Statistica Analyses
The primary goal of this investigation was
to determine whether there was an associa-
tion between organochlorine exposure and
immunosuppression based on intercolony
differences in immunological variables. The
purpose was not to show what percent of
variability in immunological responses
could be explained statistically by particular
chemicals, but rather to determine the
probability that the spatial patterns in
response variables were associated with con-
taminants as opposed to other factors or
random events. The strategy for statistical
analysis was shaped by two factors: a) the
importance of testing specific hypotheses
regarding associations between immunolog-
ical variables and organochlorine contami-
nants, and b) the great expense and tissue
volume required for congener-specific PCB
analysis. The expense and volume require-
ment prevented contaminant analyses on
tissues from individual birds. Instead, sites
were ranked in order of contamination for
various chemicals based on analysis of the
pooled egg homogenates.

The Jonckheere test for ordered
alternatives was used to test specific
hypotheses concerning contaminant-associ-
ated immunosuppression (84). It fit the
purpose and design of the study and the
constraints on chemical analysis. The null
hypothesis for this nonparametric measure
of exposure-response states that there is no
difference among the central tendencies
from different sites (HO: p1 = P2 = P3= ...

=Pn). The alternative hypothesis is that
there is a monotonic trend (not necessarily
linear) based on a priori information (HA:
p1 P2 P3 ... pn, where at least one of the

inequalities is a strict inequality). We used
data from laboratory and other field studies
to predict the effects of various contami-
nants. Inverse relationships to contamina-
tion were predicted for the PHA skin
response, antibody responses, plasma
retinol, and thyroxine. The direction of the
trends for WBC numbers could not be
predicted from laboratory data, so a two-
way test was performed by running the
Jonckheere test in both directions and dou-
bling the p-value for the most significant
trend. Concentrations of total PCBs, DDE
(1, I-dichloro-2,2-bis(p-chlorophenyl)eth-
ylene), C-TEQs, and HG-TEQs in the egg
homogenates were used to determine the
relative order of the study sites. The
Jonckheere test was performed using a
custom-written FORTRAN program
(B.Collins, Senior Statistician, Canadian
Wildlife Service) using the algorithm pro-
vided by Gibbons (85). This program
determined probability values based on
5000 random permutations of the data set
being analyzed. These probability values
were very similar to those found by the
large sample normal approximation for the
Jonckheere test (84).

Before the Jonckheere test, a preliminary
ANOVA was used to determine whether the
response variable was influenced by year or a
year x site interaction for subsets containing
multiple years of data. If there was no statis-
tically significant year or a year x site inter-
action effect (p <O.O5), then data were
pooled across years for the Jonckheere test.
If the Jonckheere test did not show any sta-
tistically significant trends, then one-way
ANOVA within years followed by Duncan's
multiple range test was used to elucidate
spatial differences in response variables. For
ANOVA analyses, heterophil/lymphocyte
ratios were transformed (loglo) to satisfy
assumptions of homogenous variances and
normality (86). This transformation also
was used for the Jonckheere and correlation
analyses for this variable. Pearson's correla-
tion analysis was used to detect associations
between biomarkers, especially to determine
whether any biochemical biomarkers could
serve as surrogates for measuring immune
function. Statistically significant correlations
(p< 0.05) were reported only if the absolute
value of the correlation coefficient (r) was
greater than 0.3.

Results
Growth
In Saginaw Bay during 1992, both species
experienced severe loss of body mass

between 3 and 4 weeks of age (-11 g/day
in herring gull and -5 g/day in Caspian
tern chicks), which was much lower than
the growth at other sites (14-20 g/day for
herring gulls, F4,62 = 7.69, p < 0.0001; 4-18
g/day for Caspian terns, F3,78=16.1,
p<0.0001). Loss of body mass occurred
despite abundant food, as assessed by the
number of regurgitated food items and
fresh pellets. High mortality of chicks and
low rates of fledging accompanied this loss
of body mass. In Saginaw Bay herring
gulls, mean growth recovered significantly
to 18 g/day in 1993 and 8 g/day in 1994
(F2,85=20.8, p<0.0001). At Saginaw Bay
and in the North Channel, there was a
significant year x site interaction during
1992 to 1994 (F2,180= 3.23, p= 0.042)
with improvement of growth to 4 g/day at
Saginaw Bay during 1993 to 1994.

Organochlorine Concentrations
The range in organochlorine concentrations
among sites was greater for pooled herring
gull eggs than for Caspian tern eggs (Table
2; Figure 1). In herring gulls, total PCBs,
C-TEQs, HG-TEQs, and DDE gave the
same rank order, so the Jonckheere test was
identical for these contaminants. In
Caspian terns, the rank orders of contami-
nation were different, requiring separate
Jonckheere tests.

Functional Tests For
lImmunocompetence
In both herring gull and Caspian tern
chicks, several measures of organochlorine
contamination showed strong inverse expo-
sure-response associations with T-cell
function as measured by the PHA skin test
(Table 3; Figure 2). For herring gulls, a
preliminary ANOVA indicated no evi-
dence for a year or a year x site interaction
effect (p> 0.45), allowing data to be pooled
across years. There was strong evidence
that the PHA response decreased as total
PCBs, C-TEQs, HG-TEQs, and DDE
increased (p=0.0002 for 1992 to 1994,
p= 0.0009 for 1992). The most contami-
nated sites (Saginaw Bay, western Lake
Erie, and Hamilton Harbor) were sup-
pressed 35 to 45% compared to the least
contaminated sites.

For Caspian terns, a preliminary
ANOVA revealed marginal evidence
that year affected the PHA response
(F2,206= 2.87, p= 0.058), but this effect was
much weaker than the site effect
(F1 206=31.1, p<0.0001). During 1992 to
1994, there was strong evidence that the
PHA response decreased as total PCB
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Table 3. Effects of contaminants on immune function in herring gull and Caspian tern chicks from the Great Lakes and Lake Winnipeg during 1992 to 1994.

Tests for ordered alternatives
Independent Predicted Actual Jonckheere

Dependent variable variable Species Year trend trend statistic p-value

PHA skin test EPCBs Herring gull 1992-1994 - - 3327 0.0002
C-TEQs 1992 - - 603 0.0009
HG-TEDS
DDEa
XPCBs Caspian tern 1992-1994 - - 10,211 0.0002

1992 - - 1821 0.0004
C-TEQs Caspian tern 1992-1994 - - 8543 0.0002

1992 - - 387 0.14
DDE Caspian tern 1992-1994 - - 7073 0.0002

1992 - - 1589 0.0008
Total antibody response EPCBs Herring gull 1992-1994 - + -463 0.56

C-TEQs 1992 - + -99 0.73
HG-TEQs
DDEa
XPCBs Caspian tern 1992-1994 - + -3546 0.99
C-TEQsa 1992 - + -602 1.0
DDE Caspian tern 1992-1994 - + -5698 1.0

1992 - + -582 1.0

Organochlorine contaminants were measured in pooled egg samples. aWhen sites were ranked by different contaminants, their rank orders were identical for several chemicals.
Therefore, the Jonckheere test was the same for these chemicals.

(p = 0.0002), C-TEQ (p = 0.0002), and
DDE (p= 0.0002) exposure increased. In
1992, there was strong evidence for an
inverse relationship with total PCBs
(p=0.0004) and DDE (p=0.0008) but
not with C-TEQs (p = 0. 14). The most
contaminated sites (Saginaw Bay and east-
ern Lake Ontario) were 30% lower than
the least contaminated sites.

In both species, there was no evidence
for contaminant-associated suppression of
the total antibody (IgM + IgG) and IgG
responses following immunization with
SRBC (p>0.50; Table 3; Figure 3). How-
ever, these biomarkers were influenced by
site and (or) year. In herring gull chicks of
Saginaw Bay, the only site with multiple
years of data, there was marginal evidence
that total antibody titers decreased from
1992 to 1994 (F2,84= 2.50, p=0.088) but
stronger evidence for decreasing IgG titers
(F2,84=4.13, p=0.020). During 1992 to
1994, there was little evidence for a differ-
ence among the four sites in total antibody
(F3,135 = 1.74, p = 0. 16) or IgG (F3,135 =
1.53, p=0.21) titers. In 1992 alone, there
was moderate evidence that site influenced
total antibody titers (F2,43 = 3.97, pp= 0.026)
and stronger evidence that site influenced
IgG titers (F2,43=7.06, p=0.0022). For
Caspian terns from Saginaw Bay and the
North Channel, there was strong evidence
that year influenced total antibody titers
(F2,180 = 7.68, p = 0.0006) and marginal
evidence for a year x site interaction
(F1,180 = 2.57, p= 0.079). There was strong

evidence for a year x site interaction
effect on IgG (F2,179= 5.24, p= 0.0061). In
1992, there was strong evidence for differ-
ences among the three sites in total anti-
body (F2,61 = 5.19, p= 0.0083) and IgG
(F2,61 = 5.76, p= 0.005 1) titers. After examin-
ing the differences in titers among Caspian
tern colonies, a posteriori Jonckheere tests
provided evidence for positive associations
between the total antibody response and
total PCBs, C-TEQs, and DDE in 1992
alone and 1992 to 1994 (p<0.02 for
two-way tests).

Biochemical and Hematological
Biomarkers
Several organochlorines showed inverse
exposure-response relationships with plas-
ma retinol, especially in Caspian tern
chicks (Figure 4). In terns from Saginaw
Bay and the North Channel, a preliminary
ANOVA revealed marginal evidence for
a year x site interaction (F1,31 = 3.35,
p= 0.077) but little evidence for a year
effect (F1,31= 2.16, p= 0. 15). During 1992
to 1993, there was strong evidence for a
negative relationship between plasma
retinol and total PCBs (p=0.0002), C-
TEQs (p= 0.0002), and DDE (p= 0.0002).
In herring gull chicks from Saginaw Bay
and the North Channel, a preliminary
ANOVA provided little or no evidence
that year (F1,36= 1.91, p = 0.18) or a year x
site interaction (F1,36= 0.057, p= 0.81)
influenced plasma retinol. During 1992 to
1993, there was moderate evidence that

plasma retinol decreased as total PCBs, C-
TEQs, HG-TEQs, and DDE increased
(p= 0.014).

There was no evidence that organo-
chlorines influenced plasma thyroxine
concentrations (p>0.15; Figure 5),
although these biomarkers were affected
by site and (or) year. In herring gull
chicks from Saginaw Bay and the North
Channel, the preliminary ANOVA indi-
cated strong evidence that a year x site
interaction influenced plasma thyroxine
(F1,36 = 8.05, p= 0.007). In 1992, there was
strong evidence that plasma thyroxine dif-
fered among the five sites (F4,44 = 8.60,
p < 0.000 1). For Caspian tern chicks, there
was no evidence for a year x site interac-
tion effect (F1,33=0.16, p=0.69) and only
marginal evidence for a year effect
(F1,33= 3.15, p=0.085) on plasma thyrox-
ine in Saginaw Bay and the North
Channel. During 1992 to 1993, there was
strong evidence that plasma thyroxine dif-
fered among the five sites (F4,64 = 7.52,
p< 0.000 1).

Differential WBC counts varied signi-
ficantly among sites, but an association
with organochlorine concentrations was
evident only for Caspian tern chicks in
1992. Only heterophils and lymphocytes
occurred in numbers sufficient for statisti-
cal analysis. In herring gull chicks from
Saginaw Bay and the North Channel, a
preliminary ANOVA provided strong
evidence for a year x site interaction effect
on percent heterophils (F1,48 = 14.6,
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A Herring gull chicks
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Figure 2. Relationship between T-cell-mediated immunity (PHA skin test) and PCB contamination in herring gull
(A) and Caspian tern (B) chicks from the Great Lakes and Lakes Winnipeg during 1992-1994. Closed circles indi-
cate mean response for each site. Error bars indicate one standard error of the mean. Numbers in parentheses
indicate sample sizes. See Table 1 for site codes. Regression lines indicate trends.

p = 0.0004) and percent lymphocytes
(F1,48 = 13.2, p= 0.0007). Considering only
1992 data, there was strong evidence that
site influenced both percent heterophils
(F4,42= 5.64, p= 0.001) and percent lym-
phocytes (F4,42=6.26, p<0.0001). There
was little or no evidence that organochlo-
rine contaminants affected the heterophil/
lymphocyte ratio of herring gulls in
1992 (p=0.26 for a two-way test). In
Caspian tern chicks from Saginaw Bay and
the North Channel, the preliminary
ANOVA provided strong evidence for a

year x site interaction effect on percent
heterophils (F 1,53 = 48.6, p < 0.0001) and
on percent lymphocytes (F1,53=29.6,
p<0.0001). In 1992, there was strong
evidence that site influenced percent het-
erophils (F4,41 = 13.7, p< 0.000 1) and per-

cent lymphocytes (F4,41 = 7.92, p< 0.000 1).
In 1992, there was strong evidence that the
heterophil/lymphocyte ratio increased with
increasing total PCBs (p=0.0028 for a

two-way test), C-TEQs (p= 0.0004 for a

two-way test), and DDE (p= 0.022 for a

two-way test).

Correlations among Functional Tests
and More General Biomarkers
There was little evidence for any biological-
ly significant relationships between T-cell-
mediated and antibody-mediated immuni-
ty (Table 4). For Caspian terns in 1992
and 1992 to 1994, there was moderate evi-
dence for a weak negative correlation of the
PHA response with the total antibody titer.
The PHA response showed few relation-
ships to other biomarkers. For herring gull
chicks in 1992, the PHA response was pos-
itively correlated with plasma thyroxine.
This relationship was weaker during 1992
to 1993. The antibody responses were
significantly correlated with WBC vari-
ables, but the nature of this relationship
differed between species. During 1992 to
1993, the heterophil/lymphocyte ratio was
negatively correlated with total antibody
and IgG titers in herring gulls and positive-
ly correlated in Caspian terns. Plasma
retinol was positively correlated with the
total antibody and IgG responses in her-
ring gull chicks in 1992. This relationship
was weaker for 1992 to 1993.

Several biomarkers were correlated with
measures of body size or age. In 1992,
body mass and wing chord length were
positively correlated with plasma thyroxine
and retinol in herring gull chicks but not
in Caspian terns. In herring gulls, the het-
erophil/lymphocyte ratio was negatively
correlated with body mass and wing chord
length in 1992. Weaker relationships were
observed during 1992 to 1993.

Discussion
Epidemiological Evaluation

This field study provided strong epidemio-
logical evidence for associations between
perinatal exposure to organochlorines and
suppression of T-cell-mediated immune
function in herring gulls and Caspian terns
at highly contaminated sites in the Great
Lakes (Table 3; Figure 2). Suppression
was most severe (30-45%) at colonies in
Lake Ontario (1992) and Saginaw Bay
(1992-1994) for both species and in west-
ern Lake Erie (1992) for herring gulls.
Saginaw Bay, Hamilton Harbor, and the
River Raisin, which enters Lake Erie near
the Monroe study site, have been designated
"areas of concern" by the International Joint
Commission because of toxic pollution. In
both species, TCDD concentrations in
eggs were highest in Saginaw Bay and Lake
Ontario. Support for associations between
organochlorine exposure and suppression
of T-cell-mediated immunity came from
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Figure 3. Mean primary antibody responses 5-7 days after SRBC immunization in herring gull (A) and C
(B) chicks from the Great Lakes during 1992-1994. Sites are arranged from left to right in the order o

total PCB concentrations in pooled egg homogenates. Error bars indicate one standard error of the mea
in parentheses indicate sample sizes. See Table 1 for site codes.

the following epidemiological criteria:
probability, strength of association, speci-
ficity, consistency, coherence, predictive
performance, and time order.

Using the criterion of probability, the
Jonckheere test provided strong evidence
that the PHA skin response decreased as

several measures of organochlorine conta-

mination increased (p<0.001; Table 3).
Beyond statistical significance, the strength
of association criterion suggested that the
magnitude of the suppression at the most

contaminated sites was biol
significant. Laboratory studies w
have shown that elimination ofT
cyte function by irradiation or i
suppressive drugs reduces ti

response by 50 to 60% (75,87,88
the 30 to 45% suppression in
gulls and Caspian terns at highly
nated sites in the Great Lakes rej

biologically significant impact.
approach the maximal suppressioi
in these species because the weig]

Saginaw Bay in 1992 was not associated
with further suppression. The criterion of
replication strongly supported these rela-
tionships that were demonstrated a) in two
species sharing a similar contaminated food
supply (fish), b) at sites with similar mag-
nitudes of contamination, and c) in multi-

|45) ple years (2-3 years) of study at some sites.
35) The criterion of coherence also sup-

ported an association between contami-
nants and suppression of T-cell-mediated
immunity. Such associations are consistent
with many laboratory experiments that
have found severe impacts of HAHs on T-
cell-mediated immunity in birds and mam-
mals (22,26,32,33,35-47). In a parallel
investigation that studied herring gull
chicks at nine colonies in the Great Lakes
and one colony on the Atlantic coast,
thymic atrophy was associated with
increasing liver EROD activity (89).
Thymic mass was reduced 20 to 45% at

S
the sites with highest EROD activity.

SagB Although thymic mass was not associated
with any single organochlorine, the thymic

4) atrophy associated with high EROD activi-
ty strongly suggests that the complex mix-
tures of contaminants in the Great Lakes
exert toxic effects on the immune systems

1445) of young herring gulls. Our findings are
(34) consistent with the results of several marine

mammal studies. Harbor seals fed HAH-
contaminated herring from the Baltic Sea
had reduced delayed-type hypersensitivity
(T-cell-mediated) and reduced mitogen-
induced proliferative T-cell responses
(67,68). Mitogen-induced proliferative T-
cell responses were inversely correlated
with blood PCB and DDE concentrations
in male bottlenose dolphins from the west

SagB coast of Florida (69).
The criterion of predictive performance

supported associations between contami-
nants and suppression of T-cell-mediated

aspian ternifieaspiangt Immunity. Published laboratory studies
incNrumbesn and our own pilot field study were used

successfully to predict suppression of T-
cell-mediated function at colonies with
high organochlorine contamination. In this

logically pilot study during 1991, the PHA skin
rith birds response was 60% lower in herring gull
-lympho- chicks from a highly contaminated site
immuno- (Gull Island, Upper Green Bay) as com-
he PHA pared to a reference site (Kent Island,
'). Hence, Atlantic coast).
herring The specificity criterion refers both to
contami- a unique effect produced only by a single
presents a cause and to a consistent effect that always
fhis may accompanies a causal factor. One difficulty
n possible in immunotoxicological studies is that
[ht loss in immunosuppression is not specific to
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Figure 4. Relationship between plasma-retinol (vitamin A) and PCB contar
tern (B) chicks from the Great Lakes and Lake Winnipeg during 1992-1993.
for each site. Error bars indicate one standard error of the mean. Numbers
See Table 1 for site codes. Regression lines indicate trends.

pollutants; many other factors such as nutri-
tion, stress, infections, and genetics influence
immune function. However, suppression of
T-cell-mediated immunity consistently
occurs after developmental exposure to
HAHs in laboratory animals, supporting this
association in Great Lakes birds.

The time order criterion supported this
association because chicks were exposed to
environmental contaminants throughout
development and after hatch, before T-cell
function was measured. Unfortunately,

there are no
Great Lakes I
of organochlc
determined
immune fune
mination. C
residues are a
than during t

immunosupF
and possibly

Suppressi
occurred ove

Caspian terns than in herring gulls (Figure
2). The sensitivity of Caspian terns to the
immunosuppressive effects of organochlo-
rines is not surprising considering their
sensitivity to other developmental effects of
these pollutants (12). The lower contami-
nant concentrations in Caspian tern eggs
are probably related to the migratory habits
of terns. They migrate to southern North,
Central, and South America for 6 months
of the year, where they presumably eat a
less-contaminated food supply when inhab-

SagB iting ocean beaches. When they return to
TE \ (20) breed at highly contaminated Great Lakes
WErie sites such as Saginaw Bay, the female terns

(10) accumulate contaminants throughout the
breeding season so that second clutch eggs
have higher organochlorine concentrations

I and lower rates of hatching than first clutch

20 25 30 eggs (12). In contrast, herring gulls areyear-round residents of the Great Lakes, so
they are chronically exposed to higher con-
centrations of organochlorines. Long-term
banding studies have shown low recruit-
ment into the breeding population of
Caspian terns raised at highly contaminat-

UGB
ed colonies (19,73,74). Contaminant-asso-

UGB ciated immunosuppression provides a
(10) potential mechanism for explaining these

population-level effects.
Because most organochlorines biomag-

nify up the food web, their concentrations

Mich
tend to be co-correlated. Hence, it is
difficult to determine which organochlo-

10)(10) rines were most closely associated with
\E0nt suppression of T-cell-mediated immunity

(10) in this study. In herring gull eggs, gradi-
SagB ents in PCBs and DDE all occurred in the
(15) same rank order. However, PCBs occurred

at much higher concentrations than
DDE, and suppression of T-cell-mediated

i 6 7 8 immunity following perinatal exposure
fetwt) is more characteristic of PCBs than DDE.

In Caspian tern chicks, the PHA skin
ination in herring gull (A) and Caspian response decreased as total PCBs, C-
Closed circles indicate mean response TEQs, and DDE increased. However, the
in parentheses indicate sample sizes. strongest association was with PCBs. PCBs

had the highest concentrations of any
organochlorines in Caspian tern eggs.

data on immune function in While PCBs were most closely associated
fish-eating birds before the era with immunosuppression in both species,
Drine pollution, so it cannot be effects of, and interactions with, other
vhether these spatial patterns in organochlorines cannot be ruled out.
ction existed before this conta- Our epidemiological evaluation did not
Considering that contaminant support the hypothesis of contaminant-
Lpproximately 80% lower today associated suppression of antibody-mediat-
the early 1970s, it is likely that ed immunity (Table 3), even though the
)ression was more widespread differences in total antibody and IgG titers
more severe at that time. among sites were biologically significant.
ion of the PHA skin response Four criteria (probability, strength of
r a narrower exposure range in association, coherence in. the form of a
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Figure 5. Mean plasma thyroxine concentrations in herring gull (A) and Caspian tern (B) chicks f
Lakes and Lake Winnipeg during 1992-1993. Sites are arranged from left to right in the order of ir
PCB concentrations in pooled egg homogenates. Error bars indicate one standard error of the mea

parentheses indicate sample sizes. See Table 1 for site codes.

dose-response relationship, and prediction
from laboratory to field investigations)
detracted from the hypothesis of antibody
suppression. Other criteria were indetermi-
nate. A posteriori Jonckheere tests indicated
an association between organochlorine cont-

amination and higher antibody titers in
Caspian terns, suggesting contaminant-asso-
ciated deregulation of antibody-mediated

immunity. Other factors such -

nutrition, stress, and weather r

influenced antibody titers.
The suppression of T-cell

immunity but not antibody
immunity in this field study
tent with laboratory studies c
and (or) perinatal exposure

PCBs most consistently suppress

mediated immunity at high acute doses
rather than at the chronic developmental
exposures observed in this field study. In
harbor seals fed HAH-contaminated her-
ring, antibody responses to ovalbumin
were reduced (68), but mitogen-induced
proliferation of B cells was not affected

(10) (67). B-cell proliferation showed no asso-
ciations with organochlorines in male bot-
tlenose dolphins from the west coast of
Florida (69).

Although the anti-SRBC antibody
response requires helper T lymphocytes,
the suppression of T-cell-mediated immu-
nity but not antibody-mediated immunity
in this field study is consistent with current
immunological theory. The contaminant-
associated suppression of the PHA skin
response may reflect suppression of a sub-

gB set of helper T lymphocytes that boost
inflammatory responses but not antibody-
mediated responses. In mice, TH1 cells pro-
mote inflammatory cytotoxic responses
while TH2 cells promote antibody responses.
Suppression of the PHA skin response
in herring gulls and Caspian terns suggests
suppression of TH1-like cells that would
not participate in antibody responses. In
laboratory animals, HAHs have been
shown to suppress such inflammatory
(delayed-type hypersensitivity) and cyto-
toxic responses (24,32,33,42,45). In many
cases, these cell-mediated responses are
suppressed without any effects on produc-
tion of antibodies that depend on helper
T-cell (THI) activity (33,43,45).

Evaluation of Inmunological and
Biochemical Biomarkers
The PHA skin test was an extremely effec-
tive and sensitive biomarker for assessing
T-cell function in wild birds. Low-within-
site variation allowed statistical differentia-

nt tion among sites, especially when sample
sizes were greater than 20 birds per site. At
sites where the test was replicated for 2 or 3
years, the response was consistent. For both

From the Great species in Saginaw Bay, immunosuppres-
icreasing total sion was similar during the year of severe
In. Numbers in body mass loss and mortality (1992) com-

pared to the following 2 years of better
growth and fledging success, suggesting

as genetics, that T-cell-mediated immune function is a
might have more sensitive end point. In northern bob-

whites (Colinus virginianus), the PHA skin
[-mediated test was more sensitive to the immunosup-
-mediated pressive effects of a low protein diet as
is consis- compared to in vitro proliferation of T

:n chronic lymphocytes in response to PHA (90). The
to HAHs. in vitro T-lymphocyte proliferation assay
s antibody- measures only very early events in the T-cell
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Table 4. Pearson's correlation analysis exploring relationships among biomarkers in herring gull and Caspian tern chicks from the Great Lakes and Lake Winnipeg during 1992
to 1994.

Relationship Species Year Variables r n p

Among measures of Caspian tern 1992 PHA Antibody -0.31 63 0.015
immune function 1992-1994 -0.16 214 0.017

Among immune function Herring gull 1992 PHA Thyroxine 0.32 47 0.026
and other biomarkers 1992-1993 0.21 67 0.085

Herring gull 1992-1993 Antibody H/L ratioa -0.50 37 0.002
IgG H/L ratio -0.56 37 <0.001

Caspian tern 1992-1993 Antibody H/L ratio 0.41 58 <0.001
IgG H/L ratio 0.35 58 0.007

Herring gull 1992 Antibody Retinol 0.68 15 0.006
1992-1993 0.31 31 0.09
1992 IgG Retinol 0.55 15 0.033
1992-1993 0.22 31 0.24

Among body size and Herring gull 1992 Thyroxine Body mass 0.36 48 0.013
biomarkers 1992-1993 0.23 69 0.051

1992 Thyroxine Wing chord 0.45 48 <0.001
1992-1993 0.37 69 0.002
1992 Retinol Body mass 0.36 48 0.013
1992-1993 0.26 68 0.03
1992 Retinol Wing chord 0.45 48 <0.001
1992-1993 0.28 68 0.019
1992 H/L ratio Body mass -0.43 47 0.003
1992-1993 -0.32 80 0.004
1992 H/L ratio Wing chord -0.39 47 0.007
1992-1993 -0.25 80 0.027

aHeterophil/lymphocyte ratio.

response that are involved with cell division.
In contrast, the in vivo skin test incorpo-
rates numerous events in the T-cell
response, including cell proliferation, differ-
entiation, and cytokine production (90,91).

The SRBC hemagglutination test was
a good biomarker for measuring anti-
body-mediated immune function in wild
fish-eating birds, allowing statistical differ-
entiation among sites. The IgG titers usual-
ly gave smaller p-values in ANOVA analy-
ses as compared to the total antibody titers,
suggesting that IgG is a more sensitive bio-
marker. A disadvantage of this assay is the
need to make two visits to each colony 6
days (or 5-7) apart to collect blood at the
peak of the antibody response. Poor weath-
er and other logistical problems can make
it difficult to return to a colony during this
narrow time window, especially if
immunological tests are being conducted
simultaneously at several sites.

Where the hemagglutination test was
replicated for 3 years, the response often
changed over time. Time trends in anti-
body titers were confounded by a change in
the individual sheep that served as a source
of SRBCs. The sheep used during 1992 to
1993 died before the 1994 field season, so

a sheep of similar age from the same flock
was substituted. In Saginaw Bay herring
gull chicks, a nonsignificant decrease in
total antibody titers occurred over 3 years.
The IgG response decreased significantly
from 1992 to 1993 but not from 1993 to
1994. In Caspian tern chicks from Saginaw
Bay and the North Channel, the total anti-
body response dropped from 1992 to 1993
and again from 1993 to 1994. The IgG
response showed a significant year x site
interaction. North Channel IgG titers
dropped significantly from 1992 to 1994,
although the 1993 titers were not
significantly different than the early or later
years. Saginaw Bay IgG titers dropped
significantly from 1992 to 1993, but not
from 1993 to 1994. In both herring gull
and Caspian tern chicks from Saginaw Bay,
IgG titers dropped between 1992 and 1993
while the same source of SRBCs was used.
This drop in IgG coincided with a dou-
bling in total PCBs and DDE in herring
gull eggs from 1992 to 1993 (DV Weseloh,
personal communicataion).

Few general biomarkers were correlated
with measures of T-cell-mediated or anti-
body-mediated immune function, suggest-
ing that they were not mechanistically

responsible for the immunosuppression
observed (Table 4). Although retinol and
thyroxine often influence immune function
in laboratory studies, there was little evi-
dence that these variables were good surro-
gate biomarkers for immune function in
this field study. Plasma retinol was strongly
correlated with antibody responses in her-
ring gull chicks in 1992 but less so when
1993 data were added. Retinol did not
appear to influence immune function in
Caspian tern chicks, although retinol con-
centrations were one to two orders of mag-
nitude lower in terns than in gulls.
Apparently, physiological regulation and
(or) dietary intake of vitamin A differs
greatly in these two species. Nonetheless, in
both species plasma retinol decreased as
PCB contamination increased, exhibiting a
similar association with contamination as
the PHA skin test (Figure 4). However, in
herring gull chicks this association was
strongly influenced by the North Channel
site, which had much higher retinol values
than Lake Winnipeg, the other reference
colony. Plasma thyroxine showed a strong
relationship to the PHA skin response in
herring gull chicks in 1992, although this
relationship was weaker when 1993 data
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were added. There was no evidence for
such a relationship in terns.

Although the tests of immune function
were not confounded by growth, several
other biomarkers were related to body size
and (or) to length of exposure to pollutants,
which increases with growth. Larger herring
gull chicks tended to have higher concen-
trations of plasma thyroxine and retinol and
more lymphocytes than heterophils. These
relationships were evident even in chicks
that fit body mass and wing chord criteria
for approximately 21 days of age.

The heterophil to lymphocyte ratio inte-
grates differential counts of the most abun-
dant WBCs in birds. With respect to disease
resistance, this ratio quantifies the balance
between the nonspecific, fast-acting defenses
of heterophils and the antigen-specific,
slower acting defenses of lymphocytes.
Heterophil to lymphocyte ratios are
increased by stress (92) and may be

influenced by other factors. The two species
displayed different relationships between
differential WBC counts and antibody
responses. In herring gulls, the antibody
responses increased as number of lympho-
cytes, some of which produce antibodies,
increased relative to the number of het-
erophils. Conversely, in Caspian terns the
antibody responses increased as the relative
number of heterophils to lymphocytes
increased. Total lymphocytes counts might
clarify the antibody relationships to differen-
tial counts, but total WBCs can be difficult
to count under field conditions.

Conclusions
This study demonstrated contaminant-
associated suppression of T-cell-mediated
immunity in prefledgling chicks of two
species of fish-eating birds from the Great
Lakes. Suppression was most severe at
colonies in Lake Ontario (1992) and

Saginaw Bay (1992-1994) for both species
and in western Lake Erie (1992) for her-
ring gulls. The identity of the particular
organochlorine(s) responsible for such sup-
pression could not be determined since
exposure to different organochlorines was
correlated due to similarities in environ-
mental chemistry and metabolism.
However, PCBs were the most closely asso-
ciated with immunosuppression. Additional
research is needed to determine the rela-
tionship between suppression of functional
assays and increased susceptibility to infec-
tious diseases. Such research will be impor-
tant for determining the consequences of
T-cell-mediated immunosuppression on
individual survival and population dynam-
ics. Alterations in variables such as retinol
and WBC counts suggest biologically
significant differences in physiology and
health among various Great Lakes colonies.
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